margins
commandJosh Errickson
2023-03-08
regress
, logit
, mixed
,
xtreg
.margins
is a post-estimation command; meaning it will
use the most recently run estimation.margins
itself is not an estimation
command.. sysuse nlsw88
(NLSW, 1988 extract)
. list in 1
+----------------------------------------------------------------+
1. | idcode | age | race | married | never_married | grade |
| 1 | 37 | Black | Single | Has been married | 12 |
|----------------------------------------------------------------|
| collgrad | south | smsa | c_city |
| Not college grad | Not south | SMSA | Not central city |
|----------------------------------------------------------------|
| industry | occupation | union | wage | hours |
| Transport/Comm/Utility | Operatives | Union | 11.73913 | 48 |
|----------------------------------------------------------------|
| ttl_exp | tenure |
| 10.33333 | 5.333333 |
+----------------------------------------------------------------+
. regress wage i.race
Source | SS df MS Number of obs = 2,246
-------------+---------------------------------- F(2, 2243) = 10.28
Model | 675.510282 2 337.755141 Prob > F = 0.0000
Residual | 73692.4571 2,243 32.8544169 R-squared = 0.0091
-------------+---------------------------------- Adj R-squared = 0.0082
Total | 74367.9674 2,245 33.1260434 Root MSE = 5.7319
------------------------------------------------------------------------------
wage | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
race |
Black | -1.238442 .2764488 -4.48 0.000 -1.780564 -.6963193
Other | .4677818 1.133005 0.41 0.680 -1.754067 2.689631
|
_cons | 8.082999 .1416683 57.06 0.000 7.805185 8.360814
------------------------------------------------------------------------------
Group | Average | Comparison | Diff. in Averages | |
---|---|---|---|---|
White | 8.083 | White vs Black | -1.238 | |
Black | ??? | White vs Other | 0.468 | |
Other | ??? | Black vs Other | ??? |
. regress, noheader
------------------------------------------------------------------------------
wage | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
race |
Black | -1.238442 .2764488 -4.48 0.000 -1.780564 -.6963193
Other | .4677818 1.133005 0.41 0.680 -1.754067 2.689631
|
_cons | 8.082999 .1416683 57.06 0.000 7.805185 8.360814
------------------------------------------------------------------------------
\[ wage = \beta_0 + \beta_1\textrm{Black} + \beta_2\textrm{Other} + \epsilon \]
Group | Average |
---|---|
White | 8.083 |
Black | 8.083 + -1.238 = 6.845 |
Other | 8.083 + 0.468 = 8.551 |
Comparison | Diff. in Averages |
---|---|
White vs Black | -1.238 |
White vs Other | 0.468 |
Black vs Other | 0.468 - -1.238 = 1.706 |
. regress wage ib2.race, noheader
------------------------------------------------------------------------------
wage | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
race |
White | 1.238442 .2764488 4.48 0.000 .6963193 1.780564
Other | 1.706223 1.148906 1.49 0.138 -.5468071 3.959254
|
_cons | 6.844558 .2373901 28.83 0.000 6.379031 7.310085
------------------------------------------------------------------------------
. regress wage ib3.race, noheader
------------------------------------------------------------------------------
wage | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
race |
White | -.4677818 1.133005 -0.41 0.680 -2.689631 1.754067
Black | -1.706223 1.148906 -1.49 0.138 -3.959254 .5468071
|
_cons | 8.550781 1.124114 7.61 0.000 6.34637 10.75519
------------------------------------------------------------------------------
margins
does this for us!
Group | Average |
---|---|
White | 8.083 |
Black | 8.083 + -1.238 = 6.845 |
Other | 8.083 + 0.468 = 8.551 |
. margins race
Adjusted predictions Number of obs = 2,246
Model VCE: OLS
Expression: Linear prediction, predict()
------------------------------------------------------------------------------
| Delta-method
| Margin std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
race |
White | 8.082999 .1416683 57.06 0.000 7.805185 8.360814
Black | 6.844558 .2373901 28.83 0.000 6.379031 7.310085
Other | 8.550781 1.124114 7.61 0.000 6.34637 10.75519
------------------------------------------------------------------------------
Comparison | Diff. In Averages |
---|---|
White vs Black | -1.238 |
White vs Other | 0.468 |
Black vs Other | 0.468 - -1.238 = 1.706 |
. margins race, pwcompare
Pairwise comparisons of adjusted predictions Number of obs = 2,246
Model VCE: OLS
Expression: Linear prediction, predict()
-----------------------------------------------------------------
| Delta-method Unadjusted
| Contrast std. err. [95% conf. interval]
----------------+------------------------------------------------
race |
Black vs White | -1.238442 .2764488 -1.780564 -.6963193
Other vs White | .4677818 1.133005 -1.754067 2.689631
Other vs Black | 1.706223 1.148906 -.5468071 3.959254
-----------------------------------------------------------------
Average outcome per level
margins [categorical variable]
Pairwise comparisons between groups
margins [categorical variable], pwcompare(ci) // Produce confidence intervals, default
margins [categorical variable], pwcompare(pv) // Produce p-values
i.
.margins
operate in this
easy fashion.. regress wage age i.married, noheader
------------------------------------------------------------------------------
wage | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
age | -.0692705 .0396596 -1.75 0.081 -.147044 .0085029
|
married |
Married | -.4958806 .2530888 -1.96 0.050 -.9921934 .0004321
_cons | 10.79748 1.568569 6.88 0.000 7.721481 13.87348
------------------------------------------------------------------------------
. margins married
Predictive margins Number of obs = 2,246
Model VCE: OLS
Expression: Linear prediction, predict()
------------------------------------------------------------------------------
| Delta-method
| Margin std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
married |
Single | 8.085319 .2027826 39.87 0.000 7.687658 8.482981
Married | 7.589439 .151412 50.12 0.000 7.292517 7.886361
------------------------------------------------------------------------------
margins
margins married